Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Ginseng Res ; 47(2): 183-192, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2288719

ABSTRACT

Viral infections are known as one of the major factors causing death. Ginseng is a medicinal plant that demonstrated a wide range of antiviral potential, and saponins are the major bioactive ingredients in the genus Panax with vast therapeutic potential. Studies focusing on the antiviral activity of the genus Panax plant-derived agents (extracts and saponins) and their mechanisms were identified and summarized, including contributions mainly from January 2016 until January 2022. P. ginseng, P. notoginseng, and P. quinquefolius were included in the review as valuable medicinal herbs against infections with 14 types of viruses. Reports from 9 extracts and 12 bioactive saponins were included, with 6 types of protopanaxadiol (PPD) ginsenosides and 6 types of protopanaxatriol (PPT) ginsenosides. The mechanisms mainly involved the inhibition of viral attachment and replication, the modulation of immune response by regulating signaling pathways, including the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway, phosphoinositide-dependent kinase-1 (PDK1)/ protein kinase B (Akt) signaling pathway, c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. This review includes detailed information about the mentioned antiviral effects of the genus Panax extracts and saponins in vitro and in vivo, and in human clinical trials, which provides a scientific basis for ginseng as an adjunctive therapeutic drug or nutraceutical.

2.
New Microbes New Infect ; 51: 101081, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2245710
3.
J Mol Struct ; 1275: 134642, 2023 Mar 05.
Article in English | MEDLINE | ID: covidwho-2122710

ABSTRACT

COVID-19 is the most devastating disease in recent times affecting most people globally. The higher rate of transmissibility and mutations of SARS-CoV-2 along with the lack of potential therapeutics has made it a global crisis. Potential molecules from natural sources could be a fruitful remedy to combat COVID-19. This systematic review highlights the detailed therapeutic implication of naturally occurring glycyrrhizin and its related derivatives against COVID-19. Glycyrrhizin has already been established for blocking different biomolecular targets related to the SARS-CoV-2 replication cycle. In this article, several experimental and theoretical evidences of glycyrrhizin and related derivatives have been discussed in detail to evaluate their potential as a promising therapeutic strategy against COVID-19. Moreover, the implication of glycyrrhizin in traditional Chinese medicines for alleviating the symptoms of COVID-19 has been reviewed. The potential role of glycyrrhizin and related compounds in affecting various stages of the SARS-CoV-2 life cycle has also been discussed in detail. Derivatization of glycyrrhizin for designing potential lead compounds along with combination therapy with other anti-SARS-CoV-2 agents followed by extensive evaluation may assist in the formulation of novel anti-coronaviral therapy for better treatment to combat COVID-19.

4.
Front Immunol ; 13: 807104, 2022.
Article in English | MEDLINE | ID: covidwho-1855349

ABSTRACT

Immunoglobulin gene heterogeneity reflects the diversity and focus of the humoral immune response towards different infections, enabling inference of B cell development processes. Detailed compositional and lineage analysis of long read IGH repertoire sequencing, combining examples of pandemic, epidemic and endemic viral infections with control and vaccination samples, demonstrates general responses including increased use of IGHV4-39 in both Zaire Ebolavirus (EBOV) and COVID-19 patient cohorts. We also show unique characteristics absent in Respiratory Syncytial Virus or yellow fever vaccine samples: EBOV survivors show unprecedented high levels of class switching events while COVID-19 repertoires from acute disease appear underdeveloped. Despite the high levels of clonal expansion in COVID-19 IgG1 repertoires there is a striking lack of evidence of germinal centre mutation and selection. Given the differences in COVID-19 morbidity and mortality with age, it is also pertinent that we find significant differences in repertoire characteristics between young and old patients. Our data supports the hypothesis that a primary viral challenge can result in a strong but immature humoral response where failures in selection of the repertoire risk off-target effects.


Subject(s)
COVID-19 , Ebolavirus , Hemorrhagic Fever, Ebola , Respiratory Syncytial Virus, Human , Antibodies, Viral , Humans , Pandemics , Respiratory Syncytial Virus, Human/genetics , SARS-CoV-2
5.
Neuroimmunology Reports ; : 100053, 2021.
Article in English | ScienceDirect | ID: covidwho-1586941

ABSTRACT

Background Literature describing triggers of GFAP astrocytopathy (GFAP-A) is limited. We report a case of GFAP-A in a patient with recent messenger ribonucleic acid (mRNA) severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) vaccination and discuss the possible pathogenesis. Case description A 45-year-old gentleman presented with features of meningoencephalitis 31 days after the first dose and 4 days after the second dose of mRNA SARS-CoV-2 vaccination. He sequentially developed brainstem/cerebellar, autonomic and cord dysfunction. Cerebrospinal fluid was positive for GFAP autoantibody. Clinical improvement occurred after intravenous methylprednisolone and immunoglobulins. Conclusion Although we are uncertain of a causal link of GFAP-A to mRNA vaccine, indirect activation of an underlying dysregulated immune milieu is plausible.

6.
Comput Struct Biotechnol J ; 19: 2833-2850, 2021.
Article in English | MEDLINE | ID: covidwho-1240272

ABSTRACT

The worldwide health crisis caused by the SARS-Cov-2 virus has resulted in>3 million deaths so far. Improving early screening, diagnosis and prognosis of the disease are critical steps in assisting healthcare professionals to save lives during this pandemic. Since WHO declared the COVID-19 outbreak as a pandemic, several studies have been conducted using Artificial Intelligence techniques to optimize these steps on clinical settings in terms of quality, accuracy and most importantly time. The objective of this study is to conduct a systematic literature review on published and preprint reports of Artificial Intelligence models developed and validated for screening, diagnosis and prognosis of the coronavirus disease 2019. We included 101 studies, published from January 1st, 2020 to December 30th, 2020, that developed AI prediction models which can be applied in the clinical setting. We identified in total 14 models for screening, 38 diagnostic models for detecting COVID-19 and 50 prognostic models for predicting ICU need, ventilator need, mortality risk, severity assessment or hospital length stay. Moreover, 43 studies were based on medical imaging and 58 studies on the use of clinical parameters, laboratory results or demographic features. Several heterogeneous predictors derived from multimodal data were identified. Analysis of these multimodal data, captured from various sources, in terms of prominence for each category of the included studies, was performed. Finally, Risk of Bias (RoB) analysis was also conducted to examine the applicability of the included studies in the clinical setting and assist healthcare providers, guideline developers, and policymakers.

7.
Prog Polym Sci ; 118: 101410, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1221008

ABSTRACT

Coronavirus disease 2019 (COVID-19) is largely threatening global public health, social stability, and economy. Efforts of the scientific community are turning to this global crisis and should present future preventative measures. With recent trends in polymer science that use plasma to activate and enhance the functionalities of polymer surfaces by surface etching, surface grafting, coating and activation combined with recent advances in understanding polymer-virus interactions at the nanoscale, it is promising to employ advanced plasma processing for smart antiviral applications. This trend article highlights the innovative and emerging directions and approaches in plasma-based surface engineering to create antiviral polymers. After introducing the unique features of plasma processing of polymers, novel plasma strategies that can be applied to engineer polymers with antiviral properties are presented and critically evaluated. The challenges and future perspectives of exploiting the unique plasma-specific effects to engineer smart polymers with virus-capture, virus-detection, virus-repelling, and/or virus-inactivation functionalities for biomedical applications are analysed and discussed.

8.
Sustain Cities Soc ; 70: 102887, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1157725

ABSTRACT

The fast spread of SARS-CoV-2 presented a worldwide challenge to public health, economy, and educational system, affecting wellbeing of human society. With high transmission rates, there are increasing evidences of COVID-19 spread via bioaerosols from an infected person. The current review was conducted to examine airborne pollen impact on COVID-19 transmission and to identify the major gaps for post-pandemic research. The study used all key terms to identify revenant literature and observation were collated for the current research. Based on existing literature, there is a potential association between pollen bioaerosols and COVID-19. There are few studies focusing the impact of airborne pollen on SARS-CoV-2, which could be useful to advance future research. Allergic rhinitis and asthma patients were found to have pre-modified immune activation, which could help to provide protection against COVID-19. However, does airborne pollen acts as a potent carrier for SARS-CoV-2 transport, dispersal and its proliferation still require multidisciplinary research. Further, a clear conclusion cannot be drawn due to limited evidence and hence more research is needed to show how pollen bioaerosols could affect virus survivals. The small but growing literature review focuses on searching for every possible answer to provide additional security layers to overcome near future corona-like infectious diseases.

9.
Phytomed Plus ; 1(2): 100027, 2021 May.
Article in English | MEDLINE | ID: covidwho-1032443

ABSTRACT

Background: In December 2019, a novel coronavirus, SARS-CoV-2 caused a series of acute atypical respiratory diseases worldwide. However, there is still a lack of drugs with clear curative effects, and the clinical trial research of vaccines has not been completely finished. Purpose: LH capsules are approved TCM patent medicine that are widely used for the treatment of respiratory tract infectious diseases caused by colds and flu. On April 12, 2020, LH capsules and granules were officially repurposed by the China Food and Drug Administration (CFDA) for patients with mild COVID-19 based on their safety and efficacy demonstrated through multicentre, randomized, controlled clinical trials. We hope to conduct a comprehensive review of it through modern pharmacy methods, and try to explain its possible mechanism. Methods: Using the full names of LH capsules Lianhuaqingwen, Lianhua Qingwen andSARS-COV-2, COVID-19 as the keywords of the search terms, systemically search for existing related papers in various databases such as Web of Science and PubMed. And completed the collection of clinical data in ClinicalTrials.gov and Chinese Clinical Trial Registry. Last but not least, we have sorted out the anti-inflammatory and antiviral mechanisms of LH capsules through literature and Selleck. Results: This review systematically sorted out the active ingredients in LH capsules. Furthermore, the related pharmacological and clinical trials of LH capsule on SARS-CoV-2, IAV and IBV were discussed in detail. Moreover, the present review provides the first summary of the potential molecular mechanism of specific substances in LH capsules involved in resistance to SARS-COV-2 infection and the inhibition of cytokine storm syndrome (CSS) caused by IL-6. Conclusion: This review summarizes the available reports and evidence that support the use of LH capsules as potential drug candidates for the prevention and treatment of COVID-19. However, TCM exerts its effects through multiple targets and multiple pathways, and LH capsules are not an exception. Therefore, the relevant mechanisms need to be further improved and experimentally verified.

10.
Respir Med Case Rep ; 31: 101200, 2020.
Article in English | MEDLINE | ID: covidwho-731894

ABSTRACT

Use of systemic corticosteroids for the treatment for coronavirus disease 2019 (COVID-19) among chronic obstructive pulmonary disease (COPD) patients is not well described. A 58-year-old man with fever and progressive dyspnea was admitted to the Showa University Hospital, and showed severe respiratory failure which needed mechanical ventilation. His chest computed tomography scanning showed emphysema and bilateral ground-glass opacity caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. He received 30 mg prednisolone for five days with antiviral drug of favipiravir, and was successfully extubated on day five. A SARS-CoV-2 polymerase chain reaction (PCR) test became negative on day 15. He was discharged on day 21. Serum IgM and IgG antibodies against SARS-CoV-2 converted to positive on day 7 and they kept positive on day 54 for both IgM and IgG. Combination treatment of short-course systemic corticosteroid and favipiravir might improve the prognosis for critically ill COVID-19 pneumonia with COPD without negative influence on viral clearance or antibody production.

11.
Hum Microb J ; 17: 100073, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-694208

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a rapidly emerging disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease begins as an infection of lungs, which is self-limiting in the majority of infections; however, some develop severe respiratory distress and organ failures. Lung microbiome, though neglected previously have received interest recently because of its association with several respiratory diseases and immunity. Lung microbiome can modify the risk and consequences of COVID-19 disease by activating an innate and adaptive immune response. In this review, we examine the current evidence on COVID-19 disease and lung microbiome, and how lung microbiome can affect SARS-CoV-2 infection and the outcomes of this disease. To date there is no direct evidence from human or animal studies on the role of lung microbiome in modifying COVID-19 disease; however, related studies support that microbiome can play an essential role in developing immunity against viral infections. Future studies need to be undertaken to find the relationship between lung microbiome and COVID-19 disease.

SELECTION OF CITATIONS
SEARCH DETAIL